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Improving forecasts of sockeye salmon (Oncorhynchus nerka) with
parametric and nonparametric models
Daniel Ovando, Curry Cunningham, Peter Kuriyama, Christopher Boatright, and Ray Hilborn

Abstract: Accurate forecasts of sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, play an important role in management
and harvesting decisions for this culturally and ecologically vital species. We used a suite of parametric and nonparametric mod-
els to assess the frontiers in forecast accuracy of Bristol Bay sockeye salmon possible given currently available data. In retrospec-
tive performance testing individual models were capable of reducing pre-season forecast error at the river system level by on
average 15% relative to a benchmark model. We used an ensemble modeling approach to produce pre-season forecasts based on
historical performance of individual models. This ensemble model reduced river system forecast error by 13% on average in 5 of
the 7 evaluated river systems, though it increased forecast error by 39% on average in the remaining 2 systems. We found poten-
tial for modest improvements in forecast accuracy across a variety of scales. However, all tested models failed to accurately predict
certain periods in the historical salmon return patterns, indicating that further forecast improvements likely depend on novel data
rather than more flexible models.

Résumé :Des prédictions exactes concernant le saumon rouge (Oncorhynchus nerka) dans la baie de Bristol (Alaska) sont importantes
pour la prise de décisions de gestion et de récolte pour cette espèce d’importance vitale des points de vue tant culturel qu’écologique.
Nous utilisons un ensemble de modèles paramétriques et non paramétriques pour évaluer les frontières de l’exactitude
possible des prédictions concernant le saumon rouge de la baie de Bristol étant donné les données disponibles. L’évaluation
rétrospective de la performance montre que des modèles individuels sont en mesure de réduire l’erreur des prédictions établies
avant la saison à l’échelle du réseau hydrographique d’en moyenne 15 % par rapport à un modèle de référence. Nous employons
une approche de modélisation ensembliste pour produire des prédictions pré-saison reposant sur la performance passée de mod-
èles individuels. Ce modèle ensembliste réduit l’erreur de prédiction pour le réseau hydrographique d’en moyenne 13 % pour
5 des 7 réseaux évalués, la rehaussant toutefois de 39 % en moyenne pour les deux autres réseaux. Nous notons un potentiel
d’améliorations modestes de l’exactitude des prédictions à différentes échelles. Tous les modèles évalués n’ont toutefois pas
réussi à prédire avec exactitude certaines périodes des registres passés des retours de saumons, ce qui indique que l’amélioration
future des prédictions dépendra vraisemblablement de nouvelles données et non de modèles plus souples. [Traduit par la Rédaction]

1. Introduction

Animal populations exhibit complex dynamics driven by inter-
actions with many aspects of their ecosystem. Predicting the out-
comes of these dynamics is a critical task of natural resource
management. Forecasts of future abundance are often used to set
fisheries regulations, vessel operators may make decisions about
alternative fisheries based on predicted abundance, and industries
and communities use forecasts to inform long-term and short-term
investment plans in staffing and production capacity. The past two
decades have seen explosive progress in the ability of modern
“computer age” (Efron and Hastie 2016) parametric and nonpara-
metric models to improve prediction, revolutionizing fields such
as financial modeling, weather forecasting, and medicine. How-
ever, these predictive methods are still uncommon in applied eco-
logical forecasting (Peters et al. 2014). We use the ecologically and
economically critical sockeye salmon (Oncorhynchus nerka) popula-
tions of Bristol Bay, Alaska, to assess the potential of a range of pre-
dictive modeling techniques to improve pre-season forecasts and

identify frontiers in forecast accuracy achievable given currently
available data.
Sockeye salmon are semelparous, born in fresh water where

they spend the first one or more years of their lives. Eventually,
these fish migrate to the ocean, where they remain until return-
ing to their natal river systems to spawn and then die. Sockeye
salmon exhibit life history variation in the number of years they
spend in these freshwater and oceanic phases, representing distinct
“age groups”. Following conventions in the salmon literature, we
denote age groups here by the format “years spent in fresh water.
years spent in the ocean”. For example, a fish in the 1.2 age group
spent one winter post-hatching in fresh water before migrating to
sea two years after it was spawned, and two winters in the ocean
before returning to fresh water to spawn. The Bristol Bay sockeye
salmon fishery is primarily made up of salmon from seven different
river systems, each ofwhich ismanaged as a separate stock (Fig. 1).
The commercial salmon fishery in Bristol Bay, Alaska, is the single

largest sockeye salmon fishery in the world (Steiner et al. 2011). The
estimated wholesale value of the Bristol Bay commercial sockeye
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harvest was US$390 million in 2010, providing approximately one-
sixth of the total value of all United States seafood exports (Knapp
et al. 2013). The value of the Bristol Bay fishery has continued to
grow, reaching US$508 million in 2017 (McDowell Group 2018).
Salmon returning to Bristol Bay also provide vital food security
for subsistence-dependent Alaskan communities and are critical
vectors of marine-derived nutrients that support vibrant fresh-
water habitats (Naiman et al. 2002; Schindler et al. 2003). Sustain-
able management of the Bristol Bay salmon fishery depends in
part on the accuracy of pre-season forecasts for salmon abun-
dance, which inform development and implementation of in-
season harvest strategies and successful operation of subsistence
and commercial fisheries. While in-season forecasts updated as
evidence for the strength and timing of a run accrue are vital for
management of many salmon stocks, pre-season forecasts are
also important for planning by the processing industry, as a basis
for identifying the appropriate level of supplies, equipment, and
personnel necessary to process the annual harvest. As such, the
accuracy of salmon forecasts has a direct influence on the profitabil-
ity and efficiency of the salmon industry as a whole, particularly for
stocks with a shorter harvest window relative to the time needed to
plan and adjustfishing andmanagement actions.

The Fisheries Research Institute (FRI) at the University of Wash-
ington and the Alaska Department of Fish and Game (ADFG) have
been providing pre-season forecasts for the annual abundance of
sockeye salmon returning to the major river systems and fishing
districts of Bristol Bay since at least 1967 (C. Cunningham, personal
communication.). While the exact statistical methods used for FRI
and ADFG forecasts have evolved over time, throughout their his-
tory they have primarily been based on the relationship between
the abundance of successive age classes of salmon returning in
different years. While these traditional forecast methods have
been useful in guiding decisions by fishers, processors, and man-
agers alike, improvements in the accuracy and precision of pre-
season forecasts would represent a valuable advance.
There exists some “frontier” of maximum predictive ability

contained in the available data used to make forecasts. However, a
model might perform far below the predictive frontier attainable
given available data if it is severely misspecified (i.e., if the assump-
tions of the model do not properly reflect reality). Identifying the
best predictive model in an ecological setting has conventionally
been achieved bymanual construction and comparison of compet-
ing models via some information criteria. However, this can be a
cumbersome process, particularly as the number of covariates and

Fig. 1. Annual total abundance of returning sockeye salmon (Oncorhynchus nerka) to Bristol Bay, Alaska (A), by river system (B), and by age
group (C). Numbers indicate millions of salmon. Age group is formatted by “years spent in fresh water.years spent in ocean”. Map adapted
from Cunningham et al. (2019). [Colour online.]
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subsequently the number of potential interactions and nonlinear-
ities increases.
Alternatively, nonparametric methods such as machine learn-

ing excel at identifying and exploiting potentially complex correla-
tions between variables in a system. Parametric statistical methods
often restrict themselves to simplified (e.g., linear) and often non-
dynamic representations of natural systems, both for analytical
tractability and to facilitate heuristic understanding of underlying
processes. Typically, these parametric statistical methods are con-
cerned with explicitly estimating and interpreting model parame-
ters rather than solely forecasting responses, such as population
size (Beyan andBrowman 2020;Malde et al. 2020).Wewould expect
nonparametric methods to show substantial improvement in pre-
dictive power when the “true” underlying system linking observed
variables and outcomes differs dramatically from the simplified
representations of the system approximated by more parametric
statistical approaches. In the case of salmon, we know that interan-
nual variation in run sizes is affected by a wide range of ecosystem
variables, including spawning success, river conditions, oceanic
predator and prey abundance, and competition with other sal-
monids (Connors et al. 2020). By reducing the potential for predic-
tive model misspecification, nonparametric models that essentially
seek to “learn” the best model structure for the sole purpose of
maximizing out-of-sample predictive performance can provide a
test of the predictive information content of the available data
themselves. Utilizing multiple parametric and nonparametric
modeling approaches allows us to develop a clearer picture of this
frontier in predictive ability achievable given a certain set of data.
Salmon forecasting has traditionally relied on cohort or “sibling”

regression methods, in which the return abundance of an older age
class is predicted by the abundance of younger age classes, returning
in prior years but originating from the same river system and brood
year. For example, the return abundance of four-year-old fish are
predicted by the returns of three-year-old fish observed in the previ-
ous season.There are good reasons for this practice: trends in sibling
abundance integrate across many environmental factors affecting
salmon survival and returns. If a particular cohort suffers from poor
environmental conditions, increased competitionwith conspecifics,
or a greater abundance of predators, the demographic impacts of
these changes will be reflected in the return abundance of younger
age classes from the same cohort (i.e., originating from the same
brood year) that experienced similar environmental conditions or
resource availability, and by extension survival, as juveniles.
However, the standard sibling regression method does have

shortcomings, most notably the underlying assumption of consis-
tency in the relationship between the abundance of different age
classes and stability in the maturation schedule (i.e., the probability
of salmon maturing and returning to fresh water to spawn after a
given number of years in the ocean). For example, if environmental
conditions cause members of a cohort of salmon to spend more
time at sea than in previous years, a sibling regressionmight under-
predict the number of future returns. In addition, sibling regression
requires accurate observations of the return abundance for younger
sibling age classes, limiting the performance of these models in
predicting returns of younger salmon for which few or no sib-
lings (i.e., returning younger age classes) have yet been observed.
We hypothesize that directly incorporating data on candidate

potentially time-varying factors influencing and correlated with
salmon return size, rather than relying on sibling returns alone,
may help improve forecast performance given the complex dynam-
ics of salmon populations. However, these variables are likely to
have complex, nonlinear, and nonstationary effects on salmon
populations, potentially obscuring their value from conventional
parametric statistical approaches with user-defined parameters,
structures, and error distributions. To explore this possibility,
we used a suite of four methods together with a panel of data on
salmon populations and environmental conditions in Bristol Bay,
Alaska, to explore what if any improvements in forecast skill could

be achieved. These models included two machine learning meth-
ods, a random forest (rand_forest) (Breiman 2001; Wright and
Ziegler 2017) and a boosted regression tree (boost_tree) (Chen
et al. 2020), empirical dynamic models (edm) (Sugihara and May
1990; Ye et al. 2020; Munch et al. 2020), and dynamic linear
models (dlm) (Pole et al. 1994; Petris et al. 2009). We compared
each model to the performance of a lag(1) model in which the
predicted returns for a given age group and river system in a
year are equal to the observed returns for that that age group in
that river system in the prior year. We also evaluated the perform-
ance of amodel ensemble that weights predictions from individual
ensemble members (alternative predictive model types) based on
recent performance, and compare this with observed performance
from the FRI forecast, a benchmark forecast that utilizes a qualita-
tive ensemble approach based on evaluation of recent performance
for alternativemodels within the ensemble.
Other studies have incorporated various time-varying paramet-

ric and nonparametric models, including versions of the models
used here, for salmon forecasting (Holt and Peterman 2004; DFO
2018; Vêlez-Espino et al. 2019; Yi et al. 2019). Our study builds on
this literature not by seeking to establish whether one type of
model performs inherently better than others, but by examining
the ability of a suite of thesemodels to collectively improve salmon
forecasting by leveraging correlations both within and among river
systems and age classes in Bristol Bay. In doing so, we demonstrate
how collections of parametric andnonparametricmodels canbe used
to identify frontiers in forecasting ability available in a givendataset.

2. Materials and methods
All code and data needed to fully replicate our results are publicly

available at https://github.com/DanOvando/salmon-forecast-paper/.
We describe critical details of each our main methods here. All
analyses were conducted in the R programming language (R Core
Team 2021).
The general structure of our methods are as follows:

1. Individual models for each river system and age group were
fit to historical data.

2. Retrospective performance of individual model was assessed
using one-step-ahead predictions (e.g., model fit to data through
1999 and used to predict return abundance in 2000) over the
period 2000–2020.

3. Comparison of performance from individual model types against
a benchmark “lag(1)” prediction model in which the forecast for
next year is simply the observed returns in the previous year.

4. Individual models were aggregated into a statistical ensemble
model based on their historical performance against the lag(1)
benchmark.

5. The statistical ensemble model was then compared to a more
qualitatively constructed ensemble model, in which research-
ers manually select individual models from an evolving suite
of methods based on recent (20-year) performance. This is the
method historically used to generate Bristol Bay salmon fore-
casts, although the individual prediction models within the
selection suite have changed over time. As such this method
provides a status quo benchmark to which individual models
and statistical ensemblesmay be compared.

2.1. Data

2.1.1. Salmon returns
The primary data behind this analysis are historical numbers

of sockeye salmon by age group returning to each of the seven
Bristol Bay river systems considered here (Fig. 1). We included
data from 1963 through 2020, omitting pre-1963 data as that year
marks amajor change in the data collectionmethods.We generated
forecasts for the four most prominent age groups in the data, the
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youngest of which being the 1.2 age group. However, we include
data from younger age groups as candidate covariates. For example,
returns of 1.1 fish in the year 2000 are used to generate forecasts of
1.2fish in the year 2021, even thoughwenever forecast 1.1fish explic-
itly. In this manner all forecasts generated by our model can be
based at least in part on previous observed siblings.
The dynamics of the Bristol Bay salmon runs changed dramati-

cally from their historical patterns starting in the 1980s (Fig. 1).
We chose to include data from before and after this change, rather
than fitting to data from the more recent regime only, as explora-
tory analyses found better forecast accuracy resulting from inclu-
sion of the full dataset. Since each of themodels used here have the
capacity for time-varying parameters, including data from before
and after 1980 allows in theory for themodel to leverage shared pat-
terns across the two regimes while also theoretically learning about
changes in patterns over this time period. Allmodels were fit on the
raw unit-scale (i.e., not log-transformed) returns, as we found better
performancewith this route than through log-transformation.

2.1.2. Additional covariates
Along with sockeye salmon returns, we also included several envi-

ronmental and salmonid datasets as potential covariates (Table 1).
Environmental data included the strength of the Pacific Decadal Os-
cillation (PDO), sea surface temperature, sea level pressure, andwind
stress. Each of these variables were included as the mean or median
of the values of that index over the Bristol Bay area betweenMay and
August of the year in which the cohort being forecasted would have
entered the ocean. Our assumption here is that this early oceanic pe-
riod represents a critical stage in the survival of sockeye. We tested
treating gridded values of environmental covariates over space and
time as predictors (rather than aggregating to the Bristol Bay-wide
value), in theory allowing the models to learn which locations and
times were the most useful predictors, but found this approach to
perform poorly, likely due to the sample size available. Environmen-
tal datasets were queried from the NOAA Environmental Research
Division’s Data Access Program (ERDDAP) portal using the rerddap
package inR (Chamberlain 2019).We also included as candidate cova-
riates natural origin returns of pink (Oncorhynchus gorbuscha) and
chum (Oncorhynchus keta) salmon from a range of North Pacific stocks,
pulled from Ruggerone and Irvine (2018). While all of the models
used in this paper are capable of including all of the covariates
included in Table 1 in somemanner, only themachine learningmod-
elsmade use of these data.

2.2. Machine learningmodels
We evaluated two different machine learning models: a ran-

dom forest (rand_forest, implemented through the ranger pack-
age in R; Wright and Ziegler 2017), and boosted regression
trees (boost_tree) through the xgboost package (Chen et al.
2020). A recurrent neural network implemented through tensorflow
(Allaire and Tang 2020) through the keras interface (Allaire and
Chollet 2020) was also tested but was found to perform poorly rel-
ative to the other methods and to be extremely computationally
intensive and as such was not included in the main analysis.

Random forests are ensembles of regression trees, which make
predictions by selecting nested splits of variables and mapping
the mean level of the dependent variable at the terminal nodes
of each tree. Boosted regression trees are similar to random for-
ests, but have mechanisms in place that actively update the
model to address data points that the model is struggling to fit
(Elith et al. 2008). For all machine learning methods, within a
model fit the model selects splits/transformations/coefficients to
minimize the root mean squared error (RMSE) of predictions for
data withheld from the fitting process by the algorithm.
Both the random forest and boosted regression tree models had

access to the same data. These data included transformations of
both the environmental and salmonid data in Table 1 and the histor-
ical return data. For the environmental and salmonid data, we cal-
culated the cumulative mean value for each variable experienced
by the cohort in question during its oceanic phase. For the historical
return data, the predictors for a given cohort are all the observa-
tions of that cohort in previous years across all river systems. For
example, if the model is currently predicting the 1.3 age group, the
return covaraites would be the returns of 1.2 fish in all river systems
in the prior year, the returns of 1.1 fish in all river systems the year
before that, and so on. We also calculated the number of spawners
that produced each cohort and used that as a predictor. Some data
were missing for the earliest years in the data (e.g., spawning num-
bers for cohorts born before 1963), and these were imputed from
themost recent yearswith available data for that river system.
We fit versions of each model separately for each age group in

eachmajor river system.We tested versions of themodels that fit
the age groups and river systems simultaneously, but did not use
this approach, as it performedworse than the individual approach,
likely due to our limited sample size. When fitting models at the
level of age groups by river system, data were first split into rolling
training and testing sets. For example, if the goal is to forecast
returns in the year 2001, all data prior to 2001 were used as the
training data, and all data post-2000 were set aside as the “testing”
data. We then split each of the training sets for performance test-
ing (e.g., all data before the year 2000 if the year 2001 is to be fore-
casted) into a series of analysis and assessment splits for tuning
purposes. Given the time series nature of the data, we generated
these analysis and assessment splits in a rolling manner. For exam-
ple, for the first split, we used the first 70% of the training data as
the analysis data to fit a model and the remaining 30% of the train-
ing data as an assessment split to evaluate the performance of that
model. For the next split we used the first 75% of the training data
for the analysis split and 25% for the assessment split, and so on.
These analysis and assessment splitswere used to tune nuisance pa-
rameters common to allmachine learningmodels, for example the
minimum node size of fitted trees (see the online Supplementary
Table S31 for a complete list of tuning parameters). We fit each of
our assessment splits across a grid of potential parameter values
and selected the set of tuning parameters that minimized the
RMSE of the predictions on the assessment splits (see computa-
tional environment available at https://github.com/DanOvando/
salmon-forecast-paper/ for detailed steps in this process).

Table 1. Environmental and salmonid datasets available to machine learning models.

Name Description Source

Pacific Decadal Oscillation Mean PDO index between May–August in year cohort entered ocean JISAO
Sea level pressure Median Bristol Bay SLP between May–August in year cohort entered ocean ERDDAP ICOADS
Sea surface temperature Median Bristol Bay SST betweenMay–August in year cohort entered ocean ERDDAP HadISST
Wind stress Median Bristol Bay wind stress between May–August in year cohort entered ocean ERDDAP ICOADS
Pink and chum abundance Natural origin returns of pink and chum salmon Ruggerone and Irvine 2018

Note: JISAO, Joint Institute for the Study of the Atmosphere and Ocean; ERDDAP, National Ocean and Atmospheric Administration’s Environmental Research Division’s
Data Access Program; ICOADS, International Comprehensive Ocean–Atmosphere Data Set; HadISST, Hadley Centre Global Sea Ice and Sea Surface Temperature.

1Supplementary data are available with the article at https://doi.org/10.1139/cjfas-2021-0287.
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Once the optimal set of tuning parameters for each training set
were selected, we then fit the final model using all the training
data with those tuned parameters, and used that model to pre-
dict the returns in the testing set. This process was repeated for
each forecasting year. All relevant data transformations were pre-
pared only on training/analysis splits (e.g., means and standard
deviations for centering and scaling) and then applied to testing/
assessment splits.

2.3. Dynamic linearmodels
To date methods for forecasting sockeye salmon abundance in

Bristol Bay and throughout Alaska have generally relied on the
relationship between the abundance of different age classes from
the same cohort, or originating from the same brood year, but
returning to breed in subsequent years at different ocean ages.
Foundational to the predictability of sibling relationships is the
assumption that the ratio of returns by age class remains stable
across time. In a context of a linear model, for example, we can
model returns as R̂

1:3
t ¼ aþ bR1:2

t�1, where R̂
1:3
t is the predicted

return abundance of the older (1.3) age class and R1:2
t�1 is the

observed abundance of the same cohort returning in the prior
year after one fewer years in the ocean (i.e., age group 1.2).
Under a classic sibling regression, the assumption is that the
estimated parameters a and b remain constant across time.
However, there are multiple conditions under which both the
average return abundance of a particular age class or the ratio
of abundances among age classes might change over time. For
example, if the average maturation schedule (i.e., the probabil-
ity that an individual will mature after 2 vs. 3 years in the ocean)
changes in response to natural or anthropogenic selection, the
assumption of a stationary parameter is violated. Alternatively,
if average marine mortality experienced by salmon changes as
a result of large-scale climate, ecosystem, or trophic shifts, this
should be reflected by changes in both parameters of the regres-
sion model.
To better represent the dynamic nature of sibling or cohort

relationships over time and improve predictive performance, we
implement dynamic linear models (DLMs). DLMs are a class of
regression models where the values of regression coefficients are
permitted to evolve over time, rather than remain static (Pole
et al. 1994; Petris et al. 2009). DLMs were fit to available data using
a single predictor age class (one fewer year in the ocean, return-
ing the prior year), and allowing for evolution of both the slope
and intercept parameters over time, as follows:

R̂
1:3
t ¼ at þ b tR

1:2
t�1 þ e t

Both regression parameters are described by a random walk
(i.e., at � Normalðat�1;s

2
aÞ and b t � Normalðb t�1;s

2
b Þ), and errors

were assumed normally distributed (e t � Normalð0;s2
e Þ). DLMs

were implemented using the Multivariate Autoregressive State-
Space Modelling (MARSS) package (version 3.10.12) in R (Holmes
et al. 2012, 2020). The full time series (brood year 1963 forward)
of age and river system specific abundances reconstructed by
Cunningham et al. (2019) were for model fitting. For example,
to predict the abundance of the 1.2 age class returning to the
Wood River system in 2010, the DLM model was fit to available
data 1963–2009, with the 1.1 age class in prior years assumed a
priori to be the most informative sibling abundance predictor.
Given the random walk structure of these dynamic linear mod-
els, it is implicitly assumed that both the average abundance and
the empirical relationship between age classes for the terminal fore-
cast year aremost similar to values for those parameters observed in
the recent past. This is in contrast to the machine learning and
empirical dynamic modeling approaches that are more flexible
in this regard.

2.4. Empirical dynamicmodeling
Empirical dynamicmodeling (EDM) is a nonparametric approach

to characterize ecological dynamics and generate forecasts. The
approach is predicated on Takens’ theorem, which states that a
single time series and a number of lags (dimension; E) are repre-
sentative of overall system dynamics (Takens 1981; Sugihara and
May 1990). Different types of EDM have identified causal relation-
ships in ecological systems (Sugihara et al. 2012) and improved fore-
cast skill in Fraser River sockeye salmon (Ye et al. 2015). See Munch
et al. (2020) and Chang et al. (2017) for more general overviews of
EDM.We used the software package rEDM (Park et al. 2021) for our
analysis.
We focused on multiview embedding form of EDM (Ye and

Sugihara 2016) to predict Bristol Bay sockeye returns.We predicted
out-of-sample river and age-class-specific returns for 2000–2020.
The idea behind multiview embedding is that there are potentially
many valid reconstructions of system dynamics, and evaluating
possible different combinations may improve performance. The
top multiview embedding was identified with river-specific data
with a maximum number of dimensions (E) of two. Multiview
embedding selects models based on the within-sample fits. So to
predict, say, Kvichak 2.2 returns in the year 2000, we subset data
through 1999 for Kvichak 1.2, 1.3, 2.3, and 2.2, then selected the mul-
tiview embedding that had the highest within-sample predictive
skill. We evaluated embeddings with maximum dimensions up to
E = 4, although this increase did not consistently result in improved
within-sample predictive skill, perhaps due to noise in the data.
We present results from multiview embedding but we also eval-

uated additional EDM approaches. These included multivariate
simplex, multivariate sequentially locally weighted global linear
maps (s-map), and composite libraries for prediction to the salmon
return data. Thesemethods require identifying the dimensionality (E)
of a time series and constructing an attractor (a time series and its
E-lagged coordinates). Leave-one-out prediction identifies the best
E of a time series. We used E values ranging from 1 to 10, found the
E-nearest neighbors (based on Euclidean distance) from the obser-
vation of interest, and calculated a predicted value by averaging
the E-nearest neighbors. The best E had the highest correlation
between observed and predicted values. S-maps is an extension of
simplex that has the addition of a weighting parameter (theta, u ),
which modifies the strength of nearest neighbor weighting (u = 0
weights nearest neighbors equally; u > 0 means stronger weight-
ing of nearest neighbors) (Sugihara et al. 1994). Across these tests,
the multiview method with E = 2 was the best-performed, and as
such iswhatwe present here.

2.5. Performancemetrics
We did not conduct formal statistical tests of model fit or per-

formance. Parameters of conventional statistical models might be
assessed in terms of statistical significance, andmodels compared
via some form of information criterion. However, neither the
machine learning or the empirical dynamic modeling methods
have formal estimates of uncertainty or likelihoods and as such
do not produce measures of statistical significance around indi-
vidual forecasts and cannot be compared using information criteria
such as AIC (Akaike 1974) scores. Accordingly, we judged model per-
formance by the point estimates of SRMSE produced by each model
across the retrospective horizon 1990–2020 SRMSE measures the
performance of eachmodel relative to a lag(1)model, a conventional
benchmark model for time series modeling (Hyndman and Koehler
2006;Ward et al. 2014).
RMSE is calculated as

RMSEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
I

XI

i¼1

ðyi � fi;mÞ2
vuut
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where i represents an observation of numbers of returning salmon
y and the forecast for those numbers f by a given model m. In the
manner of mean absolute scaled error (MASE; Hyndman and Koehler
2006), we scaled each model’s RMSE for a given resolution by the
RMSE of a lag(1) model for the same resolution (for example at the
river system level).

RMSElagð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
I

XI

i¼1

ðyi � yi;lagð1ÞÞ2
vuut

and SRMSE for modelm is then

SRMSEm ¼ RMSEm

RMSElagð1Þ

MASE is commonly used to judge the accuracy of predictions
derived from time series models, since it compares the error of a
given model to the error expected by a simple model in which
the predictions in a given time step are equal to the observed val-
ues in the last time step (a lag(1) model). We used SRMSE instead
of MASE to reflect the use of the forecast. MASE considers an
error of ten to be twice as bad as an error of five. In the context of
salmon forecasting, our primary objective is to avoid massively
over or under estimating the pre-season forecast. SRMSE penal-
izes large errors more than small errors, helping select models
that avoid the kinds of large errors that are most problematic for
the task of managing salmon populations. Bias is also of impor-
tance in judging a forecast, and we include summaries of bias
performance in the online Supplementary Materials.1

An SRMSE of one means that a model has predictive perform-
ance equal to that of the lag(1) model. An SRMSE greater than one
indicates that a given model performs worse than the lag(1) bench-
mark, and an SRMSE less than one that a model performs better
than the lag(1) benchmark (Hyndman and Koehler 2006). We also
calculated the predictive R2 for each of our relevant results.

2.6. Testing regime
All models were compared based upon one-step-ahead forecast

skill, defined by SRMSE. Each of the evaluated models generate
forecasts at the resolution of age group and river system in a given
year. Forecasts for a given year are produced by a model trained on
all years after 1963 and prior to the year for which a forecast is
desired. This is performed in a rolling fashion, such that for exam-
ple forecasts for the year 2018 are produced by a model trained on
data from 1963 to 2017, the 2019 forecast by amodel trained on data
from 1963 to 2018, and so on. One-step-ahead performance skill was
preferred over simple leave-one-out cross validation because it bet-
ter aligns with the context of pre-season forecasting (i.e., data in
hand through the current year are used to predict the next), and
should be expected to more appropriately reflect true forecast
uncertainty in the presence of periodic regime shifts in salmonpro-
duction and the potential for unmodeled autocorrelation. Each
method has its own ways of tuning and validating the model, but
all such steps are performed using only the training data: all data
for the forecast year are held out until the final prediction.
Predictive performance of candidate models was calculated by

generating one-year-ahead forecasts for each target river system by
age class combination, as a rolling window from the year 2000 to
2020. This method for quantifying forecast performance is most ap-
plicable to the context of this ecological forecasting problem as
each candidate model is trained on data up to, but not including,
the prediction year. Even though eachmodel generates predictions
at the resolution of age group and river system, we generally com-
pare model performance at coarser resolutions (for example all age
groups summedwithin a river system). In those cases, wefirst aggre-
gated the total returns at the resolution in question (e.g., summing
all observed and forecast returns across all age groups for a given

river system) and then calculated the SRMSE based on those aggre-
gated data. This allowed the best model to differ based on the scale
of the predictions. For example, the model that performed best
when measured at the level of age group and river system may not
be themodel the performed best in terms of total system returns.

2.7. Ensemblemodels
The chosen testing regime allowed us to compare the retrospec-

tive predictive power, defined by SRMSE, of individual models at a
variety of spatial resolutions. However, scientistsmustmake a deci-
sion each year as to which models to use for particular forecasts,
and there is no guarantee that pastmodel performancewill predict
future model performance. A substantial body of literature sug-
gests that creating “ensemble”models that weight individual mod-
els to create a single composite prediction can outperform any one
individual model (Dietterich 2000; Araújo andNew 2007; Anderson
et al. 2017b). To assess the ability of this idea to assist in annualmodel
selection and weighting, we compared two different ensemble mod-
els: a purely statistical ensemble constructed by a random forest and
amixed-methods ensemblemodel published as the FRI forecasts.
The random forest ensemble model was updated each year by

evaluating the performance of different models in the past and
creating a prediction for the current time step based on the per-
formance of component models (the ensemble members) in the
prior time steps. For the random forest ensemble, we predicted
the total returns by river system as a function of the predictions
by river system and age group from each individual candidate
model type. Along with the four models estimated in our results,
the random forest also had access to the baseline lag(1) model, in
case the data suggest that in fact this baselinemodel is preferable
to or in someway complements the four statistical models included.
A conventional ensemble might be constructed by taking an
AIC-weighted mean of forecasts of each of the candidate models
for a particular river system. By constructing an explicit “model-
of-models” ensemble through a random forest, we allow the choice
of model weighting to vary depending on the performance of
different models in different river systems and time periods
(Anderson et al. 2017b).
The FRI forecast is a mixed-methods ensemble model manually

constructed by FRI scientists, which has used various models
throughout the years to arrive at pre-season forecasts for each
river system based on the recent performance of the component
models. The FRI forecast for a specific river by age class combina-
tion was traditionally constructed by AIC-weighting across candi-
date linear sibling regression models. Candidate linear models
predict returns of the target age class using returns of one or two
younger age classes seen in prior years as predictors, but unlike
the DLMmodel explored here, assume regression coefficients are
time-invariant. These candidate predictive models were fit on two al-
ternative time series, 1963 onward and 1980 onward, to account for
broad-scale shifts in average Bristol Bay salmon population productiv-
ity following the shift in the PDO in the late 1970s. Natural-scale and
log-transformed transformations were both fit for all models. Since
2013, the FRI forecast ensemble has been constructed by comparing
the performance of the linear and log-linear AIC-weighted sibling
models, random forest models, dynamic linear sibling models,
boosted regression trees, and simple autoregressive integrated
moving average (ARIMA) time seriesmodels and selecting themodel
with the lowest residual error in predictions for the target stock–age
group across themost recent 20-year time horizon. Allmodels in the
historical FRI ensemble used only data fromwithin a single river sys-
tem, but across multiple age classes, to generate predictions (i.e.,
age-specific time series of Nushagak River returns were never used
to forecastWoodRiver returns despite their spatial proximity).
The FRI ensemble forecast values were pulled from the historical

pre-season forecasts as published. For the random forest ensemble,
we follow a similar routine to that employed for the individual (i.e.,
river- and age-specific) random forest model. We compiled the pre-
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season forecasts by river system and age group for each of the can-
didate models going back to 1991. The ensemble sought to predict
the observed total returns by river systemusing the returns by river
system and age class produced by each of the candidate models.
For the years 2000 to 2020, we performed a series of rolling model
fits, where individual forecasts and observed returns before the
testing year was held out for training (and analysis and assessment
splitting and model tuning) and then used fit the ensemble model,
which was then evaluated on the testing year. The held-out one-
year-ahead predictions of the ensemble model in each time step
were then compiled to create the historical series of ensemble fore-
casts at the river system level.

3. Results

3.1. Individual model forecasts

3.1.1. River system forecasts
Management of Bristol Bay sockeye salmon operates at the river

system level, with in-season fishery managers regulating allowable
fishing effort on a daily basis to meet annual escapement goals for
each river (Fried and Hilborn 1988; Cunningham et al. 2019). For each
river system,we selected the individualmodelwith the lowest SRMSE
over the years 2000 to 2020 as the model of choice for that river sys-
tem. On average the best-performing method reduced the SRMSE in
pre-season run forecasts at the river system level by 15%, with a mini-
mum improvement of 2% and amaximum of 28%, relative to the per-
formance of thehistorical publishedpre-season FRI forecasts.
River systems varied in both the lowest SRMSE achieved and in

the model that produced the best performance. At least one model
was able to out-perform or equal a simple lag(1) benchmark model
in each of the river systems except for the Nushagak, with the dlm
model achieving a SRMSE of 0.69 at the top end in the Kvichak
River system. The dlm, boost_tree, and rand_forest models were
selected as the best-performing candidate in at least one river

system (Fig. 2). R2 values at the system level ranged from a low of
0.15 in theNaknek River to a high of 0.58 in the Igushik River.

3.1.2. Age group forecasts
While total river system returns are the primary metric of in-

terest to the Bristol Bay sockeye fishery, the age composition of
the returns are also important given their influence of the average
size, and therefore price for each salmon harvested, and options
for processed product forms. As such we also examined the ability
of our testedmodels to generate predictions at the age group level.
In retrospect, different models performed best for each of the four
age groups considered, and at least one model was able to improve
substantially on a lag(1) model in all age groups (Fig. 3; SRMSE < 1
in all cases, with at minimum a 20% improvement over the lag(1)
model). R2 values at the age group level ranged from a low of 0.19 in
the 2.3 age group to a high of 0.71 in the 1.2 age group.

3.2. Ensemble forecasts
In theory the individual models tested here were capable of

improving pre-season forecast accuracy over the years 2000–2020
when viewed retrospectively. However, scientists must make an-
nual decisions as to which models to use and how to weigh their
predictions. To approximate this process, we selected the top-
performing (in terms of SRMSE) rolling ensemble model (either
the FRI or the random forest model-of-models ensemble) for each
of the main river systems. In 5 of the 7 evaluated river systems,
the random forest ensemble produced the preferred ensemble,
improving on the FRI forecast by on average 13%, with the FRI
forecasts being preferable of the two ensembles in the remaining
2 river systems, outperforming the random forest ensemble by
39%. R2 values of the best ensemble model at the river system
level ranged from a low of 0.12 in theWood age group to a high of
0.52 in the Kvichak age group (Fig. 4).

Fig. 2. Observed (grey ribbons) and predicted (points) numbers of returning sockeye salmon to primary sockeye-producing river systems
in Bristol Bay, Alaska. The colour of the points corresponds to the best-performing model in terms of scaled root mean squared error (SRMSE);
point transparency reflects the SRMSE of the best-performing model, noted in the top left corner of each panel along with the R2 value. [Colour
online.]
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3.3. Frontiers in performance
The underlying assumption of such an ensemble strategy is

that the information needed for an accurate forecast is present in
the data, and the key is finding the combination of individual

models that are best able to identify and leverage that informa-
tion. However, no model can find information that simply is not
present or succeed if it is based upon data that is subject to over-
whelming observation or process error. Examining trends in the

Fig. 3. Observed (grey ribbons) and predicted (points) numbers of sockeye salmon within each age group returning to Bristol Bay, Alaska.
Age group refers to “years spent in fresh water.years spent in ocean”. Colour corresponds to the best-performing model in terms of scaled
root mean squared error (SRMSE); transparency reflects the SRMSE of the best-performing model, noted in the top left corner of each panel
along with the R2 value. [Colour online.]

Fig. 4. Performance of candidate ensemble models. Shape of points indicates which ensemble model had the lowest scaled root mean
squared error (SRMSE). FRI refers to the published forecasts by the Fisheries Research Institute. The random forest ensemble is an ensemble
model constructed by random forest made out of candidate model forecasts. The forecast from the best-performing ensemble is plotted and
denoted by point shape. Colour of points shows the percent improvement of the ensemble model relative to the published FRI forecast. R2 value
noted in text in top left corner of each panel. [Colour online.]
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annual residuals by model and river system shows clear patterns.
In some years and river systems, all models perform similarly
well, indicating that the information needed for a good forecast
was present and detectable by each of the models (e.g., Nushagak
River before 2015). In other years, only particularmodels performed
well, while others struggled, indicating that information needed for
a robust forecast was present but only some models were able to
accurately identify the underlying relationship, highlighting the
value of ensemble methods (e.g., Naknek River between 2005 and
2010). However, in other years and river systems, all models strug-
gled, for example the Wood River in 2018 and the Kvichak River in
2014. This provides evidence that the information needed to gener-
ate a robust forecast in those years was simply not present in the
data that were available at the time (Fig. 5).
Our residual analysis suggests that in some instances we sim-

plymay need to collect different data for inclusion in the forecast
model if we hope to improve forecasts. For example, none of our
models were able to predict the massive spike in returns to the
Wood River system in recent years (Fig. 5), indicating that a signal
of the process resulting in an increase in salmon survival was not
among the suite of predictors explored. Conversely, all of the mod-
els performed reasonably well overmost of the history of the Nush-
agak River, except for themost recent years. Thismay be explained
by the relative lack of variation in historical returns to the Nusha-
gak River prior to 2017, allowing both parametric and nonparamet-
ricmodels to perform equallywell.
We can use the results of our most recent estimated boosted

regression tree model to examine the relative importance of dif-
ferent included data streams in improving forecast skill (Fig. 6).
While these importance scores cannot be interpreted in the same
manner as regression coefficients, they give us a sense of where
we might look for new data to inform prediction. Across all river
systems, prior returns in that system were an important predic-
tor (and inmany systems past returns in other river systems were
also a useful predictor).

4. Discussion
While our tested methods made meaningful improvements in

forecast accuracy inmany cases, no onemodel type stood out as a
clear winner, highlighting the value of multi-model inference in
ecological forecasting. Viewed in retrospect individual models
tested here were able to make substantial improvements in fore-
cast accuracy (Figs. 2–3). However, the best retrospective model
over the years 2000–2020 varied widely by age group and system,
presenting a challenge for decision makers charged with picking
which model to use for a particular forecast. Ensemble models
such as the random forest ensemble (i.e., a “model-of-models”) con-
structed here can help users separate out the signal from the noise
in historical model performance, which in this case resulted in
modest improvements in forecast still in the majority of river sys-
tems evaluated in this study.
Our results cannot be interpreted as a generalized assessment

of the relative strengths or weaknesses of the types of models
evaluated here. Model performance is a complex function of the
suitability of a given model for the task at hand, the data made
available to it, and awide range of design decisions. This is reflected
in the diversity of models classified as the best performer depend-
ing on the specific question being asked of them in our analysis.
Our claim is not that boosted regression trees for example are
inherently best at predicting the dynamics of the Wood River sys-
tem, but rather that under these particular conditions the boosted
regression tree happened to work best. Attempts to classify more
general “best”models for salmon forecastingwould require consid-
ering a broader range of empirical and simulated states, as well as
increased standardization of the design decision process.
Using multiple types of highly flexible parametric and non-

parametric models can provide insight into whether historical
limits to forecast skill were likely due to limitations in the infor-
mation content of the available data or from simply not finding
the best model to apply to the data at hand. While we were able
to improve forecast skill of Bristol Bay sockeye salmon in some

Fig. 5. Centered and scaled annual residuals (forecast returns minus observed returns) by river system and model over time. Grey bands
indicate areas more than one standard deviation from the mean residuals for a given system. Years in which all the lines are within a
grey band indicate periods where all the models struggled to provide reasonable forecasts. [Colour online.]
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instances, in particular years and systems all tested models per-
formed poorly. These events may reflect changes in the effect of
currently observed data (i.e., a violation of the assumption that
the past correlation between a variable and salmon returns will
apply in the future) or may be indicative of the underling effect
of an unobserved variable. The former case may be resolved by
simply giving the model more years on which to train or through
explicit techniques for modeling outlier events in the manner of
Anderson et al. (2017a). The latter case can only be resolved through
the inclusion of new data that contains information on the previ-
ously omitted process.
That forecasts for individual river systems can be improved by

treating historical returns in other river systems as predictors, as
evidenced by themachine learningmodels, is an important finding.
The historically used largely parametric salmon forecast methods
have largely focused on relationships among age classes within sin-
gle river systems in isolation. While perhaps not surprising given
the juvenile salmon from multiple river systems enter the same
area of the eastern Bering Sea during approximately the same
season and likely experience similar survival conditions at ocean
entry, this result suggests that sharing age-specific return abun-
dance information among salmon stocks and river systems within
Bristol Bay can inform and improve predictive performance.
In addition to the return abundance of salmon from the

home and neighboring river systems, we found that oceano-
graphic variables including mean sea surface temperature and
sea surface air pressure throughout the spatial and temporal
range of the oceanic phase of these salmon were informative
predictors for some river systems. As reported by Connors
et al. (2020), in some instances the abundance of other salmon
species (chum salmon (Oncorhynchus keta) in western Kam-
chatka and northern British Columbia, pink salmon (Oncorhyn-
chus gorbuscha) in Prince William Sound) proved important
predictors of Bristol Bay salmon return abundance (Fig. 6). Going
forward, data on freshwater conditions, interspecies competitors,

and the size structure of the salmon populations may prove useful
in improving forecast accuracy.
Takens’ theorem suggests that the dynamics of a variable, in

this case salmon returns, can be reconstructed simply by the lags
of that variable, potentially obviating the need to collect the
right covariates to provide an accurate forecast (Munch et al.
2020). While thismay be true given sufficient sample size, tempo-
ral coverage, and lack of observation error, all of these conditions
rarely hold in ecological forecasting. Case in point, the EDMmod-
els tested here were unable to accurately predict many events in
the Bristol Bay sockeye return history (Fig. 5), indicating that the
attractor constructed out of the lagged returns alone did not
have the right information needed to forecast particular events.
In these cases, collection and use of relevant covariates may help
the model make improved predictions than are possible given
lagged returns alone.
Traditional pre-season forecastmethods for sockeye salmon return-

ing to Bristol Bay and throughout Alaska have often assumed that
relationships among age classes are static over time. However,
there is increasing recognition of time-varying relationships between
Alaskan salmon production and sea surface temperature (Litzow
et al. 2018) and large-scale oceanographic processes including the
PDO (Litzow et al. 2020a, 2020b). Given evidence for the dynamic
nature of salmon–climate relationships, it should not be surprising
that salmon abundance forecast relationships should also exhibit
temporal variability. While not informed by environmental data
and only leveraging information from a single river system, the
DLM approach was found to exhibit superior performance in sev-
eral river systems and the 2.2 age class. It seems reasonable that the
flexible nature of the DLM approach to capture time-varying dynam-
ics in both average abundance, and the ratio among age classes
permits an indirect accounting for the dynamic salmon–environment
processes that are increasingly recognized.
Forecast methods historically employed by the FRI involved

evaluation of a suite of alternative forecast models in each year,

Fig. 6. Mean variable importance across all river systems of variables with importance scores greater than 0.075.
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and selection of a preferred model and data time series on which
to train the model (i.e., 1963 onward or after the observed shift in
the PDO in 1980), for each salmon stock by age class combination
based on forecast bias and precision over the recent 20-year pe-
riod. While the FRI forecast has always been primarily based on
the relationship between the abundance of age classes from the
same cohort among successive years, the suite of forecast models
explored as part of the FRI forecast has evolved over time. In recent
years new methods have been added to the forecast model suite,
including autoregressive integrated moving average (ARIMA) mod-
els, boosted regression trees, Bayesian indicator variable methods,
and dynamic linearmodels. Themanual model selection process at
the heart of the FRI ensemble approach has proven effective over
time at identifying candidate models for forecast groups (stock-
by-age) that best leverage patterns within individual time series
(i.e., ARIMA, DLM), weighting candidate predictor age classes (i.e.,
Bayesian indicator variable methods) and nonlinear relationships
between the return abundance of age classes for a stock in prior
years (i.e., boosted regression trees). However, despite the observed
value in comparing performance of alternative forecast model
types inherent in the FRI forecasting approach, significant forecast
errors have occurred. The range of models historically used by the
FRI only leveraged data for sibling age classes from the same river
system, and the potential for human error in the manual model
selection process cannot be overlooked. We demonstrate here that
statistical ensemble approaches, such as the random forest en-
semble, present a viable complement to more “human-based”
ensemble approaches.
However, the relative performance of the random forest en-

semble model to the historical FRI forecast cannot be construed
as a broader result about the relative performance of “statistical”
vs. “manual”models. The random forest ensemble utilized a range
of models and datasets that were not all available to the historical
FRI forecasts, and it is entirely possible that had the FRI had access
to those same models in the past, they would have produced more
similar results to the random forest ensemble. What our results do
show is that addition of new model types and data does provide
potential to improve on the historical FRI methods such as they
were.
We demonstrate here how parametric and nonparametric

modeling approaches can provide improvements in ecological
forecasting. Ward et al. (2014) also explored the use of models
similar to those used here in the context of ecological forecast-
ing of time series data from natural populations. They, however,
found that the sorts of tools explored here generally performed
worse than simple autoregressive models while being substan-
tially more computationally intensive. In contrast we found that
our lag(1) benchmark model was outperformed or equaled by
one or more of our models across nearly every resolution we
evaluated. What might explain this difference? First, Ward et al.
(2014) specifically designed their study around making predic-
tions of future population size solely based on historical popula-
tion size, while the forecast methods we explore here were
informed by the abundance of multiple salmon age classes or
stocks and in some cases by environmental conditions and the abun-
dance of other salmon species. Second,Ward et al. (2014) did find that
more complex models such as random forests and neural networks
performed well for some salmon populations, particularly those char-
acterized by regular cyclic behavior. Our results are broadly consistent
thenwith thefindings ofWard et al. (2014) in this respect.
However, Ward et al. (2014) did find that more complex mod-

els performed poorly relative to their baseline random walk
model in salmon stocks that exhibited less cyclic behavior. In
contrast, we found near universal improvements over our base-
line model to some degree across all river systems and age
groups, including those that either do not seem to exhibit cyclic
behavior or have experienced a break from past cycles in recent
years (Fig. 1, Supplementary Fig. S91). The machine learning

methods explored here have access to much more data than the
historical returns alone though, including environmental conditions
and abundance of other salmonids. In addition, the machine
learning methods were able to leverage correlations in returns
across multiple age groups and river systems (Fig. 6). While we
have access to over 50 years of data, longer than some of the se-
ries reported in Ward et al. (2014), our sample sizes are still mi-
nute compared to the sample sizes in most applications of
machine learning methods, indicating that these methods can
still be used with the relatively small sample sizes often encoun-
tered in forecasting the population dynamics of harvested spe-
cies. These differences of long time series, use of cross-system
and age group correlations, and inclusion of environmental
covariates may explain the ability of the more complex models
tested here to outperform benchmark lag(1) models even in sys-
tems without an obvious cyclical pattern.
One of the primary advantages of parametric statistical approaches

that make explicit assumptions about data-generating proc-
esses, and by extension error structure, is that they provide
estimates of the degree of uncertainty associated with a model
coefficient or a prediction. Nonparametric machine learning
methods are powerful in that they are able to learn complex
predictive correlations within data, but a key limitation of
these methods is that they generally do not provide estimates
of uncertainty for their predictions. We cannot therefore pro-
vide 95% confidence intervals or other conventional metrics of
uncertainty around many of our forecasts, though the SRMSE
values provide an estimate of the historical error in the fore-
casts of each model. The distribution of Pearson’s residuals for
each of the models do not exhibit any clear differences across
models (see Supplementary Materials1).

5. Conclusion
The field of ecology is generally concerned with developing

theories and evidence for why ecosystems are structured and
behave the ways they do. This pursuit of heuristic understanding
can lead to construction of interpretable models that provide
insight about system dynamics, but limited predictive power.
However, for specific application in areas such as pre-season
salmon abundance forecasts, the objective is solely to obtain
accurate and precise predictions one year into the future. We
designed and optimized our models solely around predictive
power, and while somemethods such as empirical dynamic mod-
eling and dynamic linear models can provide both insight and
predictive skill, the machine learning methods tested here
(boosted regression trees and random forests) are focused on pre-
diction alone, with limited scope to improve ecological insight.
In the case of natural resources management that often depends
on making decisions today based on predictions about the
future, prediction-focused methods such as those presented here
can present substantial opportunity. Here we show that incorpo-
rating multiple predictive models into a statistical ensemble was
able to provide some meaningful improvements in the pre-sea-
son forecast accuracy of Bristol Bay sockeye salmon.
Accurate forecasts are a crucial part of natural resource manage-

ment, a taskmade increasingly challenging by climate change. Our
gains in forecast accuracy for the economically and ecologically
critical Bristol Bay sockeye salmon fishery demonstrate the ability
of parametric and nonparametric models to make meaningful
improvements in short-term predictive ability for the abundance
of natural populations faced with a rapidly changing environment.
By combining multiple model types, we are able to identify likely
frontiers in forecast performance given currently available data.
However, even for this relatively robust dataset, we were funda-
mentally unable to predict the returns of particular river systems
and age classes in certain years. The collective failure of multiple
methods in specific time steps and locations helps clarify instances
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in which the only likely path to meaningful forecast improvement
is collection or incorporation of additional data, while also high-
lighting the potentially irreducible impact of observation error on
the limits of forecast performance. It is critical that we allocate
resources to both the advancement of predictive modeling meth-
ods in ecology and to the hard work of collecting the data from the
natural world that are the foundation of any successful forecasting
efforts.
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